Resolution of gravitational redshift on an atomic sample at the millimeter scale

  • Einstein, A. Grundgedanken der allgemeinen Relativitätstheorie und Anwendung dieser Theorie in der Astronomie. Preuss. Akad. der Wissenschaften, Sitzungsberichte 315778–786 (1915).

  • Chou, CW, Hume, DB, Rosenband, T. & Wineland, DJ Optical clocks and relativity. Science 3291630-1633 (2010).

    ADS CAS Article Google Scholar

  • Herrmann, S. et al. Gravitational redshift test with Galileo satellites in eccentric orbit. Phys. Rev. Lett. 121231102 (2018).

    ADS CAS Article Google Scholar

  • Delva, P. et al. Gravitational redshift test using eccentric Galileo satellites. Phys. Rev. Lett. 121231101 (2018).

    ADS CAS Article Google Scholar

  • Campbell, SL et al. A Fermi degenerate three-dimensional optical lattice clock. Science 35890–94 (2017).

    ADS CAS Article Google Scholar

  • Oelker, E. et al. Demo of 4.8×10−17 stability at 1 s for two independent optical clocks. Nat. Photon. 13714–719 (2019).

    ADS CAS Article Google Scholar

  • Nicholson, T. et al. Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty. Nat. Common. 66896 (2015).

    ADS CAS Article Google Scholar

  • McGrew, WF et al. Performance of the atomic clock allowing geodesy of less than one centimeter. Nature 56487–90 (2018).

    ADS CAS Article Google Scholar

  • Brewer, SM et al. 27Al+ quantum logic clock with systematic uncertainty less than 10−18. Phys. Rev. Lett. 12333201 (2019).

    ADS CAS Article Google Scholar

  • Bothwell, T. et al. JILA SrI optical lattice clock with an uncertainty of 2.0 × 10−18. Metrology 56065004 (2019).

    ADS CAS Article Google Scholar

  • Marti, GE et al. Imaging optical frequencies with 100 μHz accuracy and 1.1 μm resolution. Phys. Rev. Lett. 120103201 (2018).

    ADS CAS Article Google Scholar

  • Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic clock transition. Nature 588414–418 (2020).

    Article on Google Scholar Ads

  • Kaubruegger, R. et al. Variational spin-squeezing algorithms on programmable quantum sensors. Phys. Rev. Lett. 123260505 (2019).

    ADS CAS Article Google Scholar

  • Komar, P. et al. Quantum network of atomic clocks: a possible implementation with neutral atoms. Phys. Rev. Lett. 117060506 (2016).

    Article on Google Scholar Ads

  • Young, AW et al. Half-minute scale atomic coherence and high relative stability in a pincher clock. Nature 588408–413 (2020).

    ADS CAS Article Google Scholar

  • Safronov, MS et al. Research new physics with atoms and molecules. Rev. Mod. Phys. 9025008 (2018).

    MathSciNet CAS Article Google Scholar

  • Sanner, C. et al. Optical clock comparison for Lorentz symmetry tests. Nature 567204-208 (2019).

    ADS CAS Article Google Scholar

  • Kennedy, CJ et al. Precision metrology meets cosmology: improved constraints on ultralight dark matter from atom-cavity frequency comparisons. Phys. Rev. Lett. 125201302 (2020).

    ADS CAS Article Google Scholar

  • Boulder Atomic Clock Optical Network. Frequency ratio measurements with 18-digit precision using an optical clock network. Nature 591564-569 (2021).

    Article on Google Scholar Ads

  • Kolkowitz, S. et al. Detecting gravitational waves with optical grating atomic clocks. Phys. Rev. D 94124043 (2016).

    Article on Google Scholar Ads

  • Hafele, JC & Keating, RE Atomic clocks around the world. Science 177166 (1972).

    ADS CAS PubMed Article PubMed Central Google Scholar

  • Takamoto, M. et al. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photon. 14411–415 (2020).

    ADS CAS Article Google Scholar

  • Laurent, P., Massonnet, D., Cacciapuoti, L. & Salomon, C. The ACES/PHARAO space mission. CR Phys. 16540-552 (2015).

    CAS Google Scholar Article

  • Tino, GM et al. SAGE: a proposal for a space atomic gravity explorer. EUR. Phys. J.D. 73228 (2019).

    ADS CAS Article Google Scholar

  • Grotti, J. et al. Geodesy and metrology with a transportable optical clock. Nat. Phys. 14437–441 (2018).

    CAS Google Scholar Article

  • Flechtner, F., Sneeuw, N. & Schuh, W.-D. (eds) Observing the Earth system from space: CHAMP, GRACE, GOCE and future missions (Springer, 2014).

  • Kolkowitz, S. et al. Spin-orbit coupled fermions in an optical lattice clock. Nature 54266-70 (2017).

    ADS CAS Article Google Scholar

  • Bromley, S.L. et al. Dynamics of interacting fermions under spin-orbit coupling in an optical lattice clock. Nat. Phys. 14399-404 (2018).

    CAS Google Scholar Article

  • Wilkinson, SR, Bharucha, CF, Madison, KW, Niu, Q. & Raizen, MG Observation of Wannier–Stark atomic scales in an accelerating optical potential. Phys. Rev. Lett. 764512–4515 (1996).

    ADS CAS Article Google Scholar

  • Lemonde, P. & Wolf, P. Optical lattice clock with atoms confined in a shallow trap. Phys. Rev. AT 721–8 (2005).

    Google Scholar article

  • Aeppli, A. et al. Hamiltonian engineering of spin-orbit coupled fermions in a Wannier-Stark optical lattice clock. Preprint at https://arxiv.org/abs/2201.05909 (2022).

  • Muniz, JA, Young, DJ, Cline, JRK & Thompson, JK Cavity-QED measurements of the 87Sr millihertz optical clock transition and determination of its natural linewidth. Phys. Rev. Res. 3023152 (2021).

    CAS Google Scholar Article

  • Ludlow, AD, Boyd, MM, Ye, J., Peik, E. & Schmidt, PO Optical Atomic Clocks. Rev. Mod. Phys. 87637–701 (2015).

    ADS CAS Article Google Scholar

  • Zheng, X et al. Comparisons of differential clocks with a multiplexed optical lattice clock. Nature https://doi.org/10.1038/s41586-021-04344-y (2022).

  • Matei, DG et al. 1.5 µm lasers with a linewidth of less than 10 mHz. Phys. Rev. Lett. 118263202 (2017).

    ADS CAS Article Google Scholar

  • Lemonde, P., Brusch, A., Targat, R.L., Baillard, X. & Fouche, M. Hyperpolarizability effects in a Sr optical lattice clock. Phys. Rev. Lett. 96103003 (2006).

    Article on Google Scholar Ads

  • Lodewyck, J., Zawada, M., Lorini, L., Gurov, M. & Lemonde, P. Observing and Canceling a Disturbing Stark Shift in Strontium Optical Lattice Clocks. IEEE Trans. Ultrasound. Ferroelectr. Freq. Control 59411–415 (2012).

    Google Scholar article

  • Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of trapped ions. Rev. Mod. Phys. 75281–324 (2003).

    ADS CAS Article Google Scholar

  • Boyd, MM et al. Nuclear spin effects in optical lattice clocks. Phys. Rev. AT 76022510 (2007).

    Google Scholar announcements

  • Martin, MJ et al. A many-body quantum spin system in an optical lattice clock. Science 341632–636 (2013).

    ADS MathSciNet CAS Google Scholar Article

  • Ushijima, I. et al. Operational magic intensity for Sr optical lattice clocks. Phys. Rev. Lett. 121263202 (2018).

    ADS CAS Article Google Scholar

  • van Westrum, D. Geodetic Survey of NIST and JILA Clock Laboratories, Boulder, Colorado (NOAA, 2019).

  • Comments are closed.