Resolution of gravitational redshift on an atomic sample at the millimeter scale
Einstein, A. Grundgedanken der allgemeinen Relativitätstheorie und Anwendung dieser Theorie in der Astronomie. Preuss. Akad. der Wissenschaften, Sitzungsberichte 315778–786 (1915).
Chou, CW, Hume, DB, Rosenband, T. & Wineland, DJ Optical clocks and relativity. Science 3291630-1633 (2010).
Herrmann, S. et al. Gravitational redshift test with Galileo satellites in eccentric orbit. Phys. Rev. Lett. 121231102 (2018).
Delva, P. et al. Gravitational redshift test using eccentric Galileo satellites. Phys. Rev. Lett. 121231101 (2018).
Campbell, SL et al. A Fermi degenerate three-dimensional optical lattice clock. Science 35890–94 (2017).
Oelker, E. et al. Demo of 4.8×10−17 stability at 1 s for two independent optical clocks. Nat. Photon. 13714–719 (2019).
Nicholson, T. et al. Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty. Nat. Common. 66896 (2015).
McGrew, WF et al. Performance of the atomic clock allowing geodesy of less than one centimeter. Nature 56487–90 (2018).
Brewer, SM et al. 27Al+ quantum logic clock with systematic uncertainty less than 10−18. Phys. Rev. Lett. 12333201 (2019).
Bothwell, T. et al. JILA SrI optical lattice clock with an uncertainty of 2.0 × 10−18. Metrology 56065004 (2019).
Marti, GE et al. Imaging optical frequencies with 100 μHz accuracy and 1.1 μm resolution. Phys. Rev. Lett. 120103201 (2018).
Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic clock transition. Nature 588414–418 (2020).
Kaubruegger, R. et al. Variational spin-squeezing algorithms on programmable quantum sensors. Phys. Rev. Lett. 123260505 (2019).
Komar, P. et al. Quantum network of atomic clocks: a possible implementation with neutral atoms. Phys. Rev. Lett. 117060506 (2016).
Young, AW et al. Half-minute scale atomic coherence and high relative stability in a pincher clock. Nature 588408–413 (2020).
Safronov, MS et al. Research new physics with atoms and molecules. Rev. Mod. Phys. 9025008 (2018).
Sanner, C. et al. Optical clock comparison for Lorentz symmetry tests. Nature 567204-208 (2019).
Kennedy, CJ et al. Precision metrology meets cosmology: improved constraints on ultralight dark matter from atom-cavity frequency comparisons. Phys. Rev. Lett. 125201302 (2020).
Boulder Atomic Clock Optical Network. Frequency ratio measurements with 18-digit precision using an optical clock network. Nature 591564-569 (2021).
Kolkowitz, S. et al. Detecting gravitational waves with optical grating atomic clocks. Phys. Rev. D 94124043 (2016).
Hafele, JC & Keating, RE Atomic clocks around the world. Science 177166 (1972).
Takamoto, M. et al. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photon. 14411–415 (2020).
Laurent, P., Massonnet, D., Cacciapuoti, L. & Salomon, C. The ACES/PHARAO space mission. CR Phys. 16540-552 (2015).
Tino, GM et al. SAGE: a proposal for a space atomic gravity explorer. EUR. Phys. J.D. 73228 (2019).
Grotti, J. et al. Geodesy and metrology with a transportable optical clock. Nat. Phys. 14437–441 (2018).
Flechtner, F., Sneeuw, N. & Schuh, W.-D. (eds) Observing the Earth system from space: CHAMP, GRACE, GOCE and future missions (Springer, 2014).
Kolkowitz, S. et al. Spin-orbit coupled fermions in an optical lattice clock. Nature 54266-70 (2017).
Bromley, S.L. et al. Dynamics of interacting fermions under spin-orbit coupling in an optical lattice clock. Nat. Phys. 14399-404 (2018).
Wilkinson, SR, Bharucha, CF, Madison, KW, Niu, Q. & Raizen, MG Observation of Wannier–Stark atomic scales in an accelerating optical potential. Phys. Rev. Lett. 764512–4515 (1996).
Lemonde, P. & Wolf, P. Optical lattice clock with atoms confined in a shallow trap. Phys. Rev. AT 721–8 (2005).
Aeppli, A. et al. Hamiltonian engineering of spin-orbit coupled fermions in a Wannier-Stark optical lattice clock. Preprint at https://arxiv.org/abs/2201.05909 (2022).
Muniz, JA, Young, DJ, Cline, JRK & Thompson, JK Cavity-QED measurements of the 87Sr millihertz optical clock transition and determination of its natural linewidth. Phys. Rev. Res. 3023152 (2021).
Ludlow, AD, Boyd, MM, Ye, J., Peik, E. & Schmidt, PO Optical Atomic Clocks. Rev. Mod. Phys. 87637–701 (2015).
Zheng, X et al. Comparisons of differential clocks with a multiplexed optical lattice clock. Nature https://doi.org/10.1038/s41586-021-04344-y (2022).
Matei, DG et al. 1.5 µm lasers with a linewidth of less than 10 mHz. Phys. Rev. Lett. 118263202 (2017).
Lemonde, P., Brusch, A., Targat, R.L., Baillard, X. & Fouche, M. Hyperpolarizability effects in a Sr optical lattice clock. Phys. Rev. Lett. 96103003 (2006).
Lodewyck, J., Zawada, M., Lorini, L., Gurov, M. & Lemonde, P. Observing and Canceling a Disturbing Stark Shift in Strontium Optical Lattice Clocks. IEEE Trans. Ultrasound. Ferroelectr. Freq. Control 59411–415 (2012).
Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of trapped ions. Rev. Mod. Phys. 75281–324 (2003).
Boyd, MM et al. Nuclear spin effects in optical lattice clocks. Phys. Rev. AT 76022510 (2007).
Martin, MJ et al. A many-body quantum spin system in an optical lattice clock. Science 341632–636 (2013).
Ushijima, I. et al. Operational magic intensity for Sr optical lattice clocks. Phys. Rev. Lett. 121263202 (2018).
van Westrum, D. Geodetic Survey of NIST and JILA Clock Laboratories, Boulder, Colorado (NOAA, 2019).
Comments are closed.